Section 3: Recurrences and Closed Forms

Terminology	Recurrence Function/Relation	General formula	Closed form
Definition	Piecewise function that mathematically models the runtime of a recursive algorithm (might want to define constants)	Function written as the number of expansion <i>i</i> and recurrence function (might have a summation)	General formula evaluated without recurrence function or summations (force them to be in terms of constants or n)
Example	$T(n) = c_1 \qquad \text{, for } n = 1$ $T(n) = T\left(\frac{n}{2}\right) + c_2 \text{, otherwise}$	$T(n) = T\left(\frac{n}{2^i}\right) + i \cdot c_2$	Let $i = \log_2 n$, $T(n) = T\left(\frac{n}{2^{\log_2 n}}\right) + \log_2 n \cdot c_2$ $= T(1) + \log_2 n \cdot c_2$ $= c_1 + \log_2 n \cdot c_2$

0. Not to Tree

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
1 f(n) {
2    if (n <= 0) {
3        return 1;
4    }
5    return 2 * f(n - 1) + 1;
6 }</pre>
```

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

```
T(n) = c_0 \qquad \text{, if } n \leq 0 T(n) = T(n-1) + c_1 \quad \text{, otherwise}
```

b) Use your answer in part (a) to find a closed form for T(n)

```
Unrolling the recurrence, we get T(n) = T(n-1) + c_1
= T(n-2) + c_1 + c_1
= T(0) + c_1 + \cdots + c_1
= c_0 + c_1 + \cdots + c_1
= c_0 + n \cdot c_1
```

1. To Tree

Consider the function h(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
1 h(n) {
2    if (n <= 1) {
3        return 1
4    } else {
5        return h(n/2) + n + 2*h(n/2)
6    }
7 }</pre>
```

a) Find a recurrence T(n) modeling the worst-case runtime complexity of h(n)

```
T(n) = c_0 \qquad \text{, if } n \leq 1 T(n) = 2T\left(\frac{n}{2}\right) + c_1 \text{ , otherwise}
```

b) Use your answer in part (a) to find a closed form for T(n)

	Recursive Call	# Nodes	Tree	Sum Wor
0	T(n)	1		c_1
1	$T\left(\frac{n}{2}\right)$	2	+ C ₁	$2c_1$
2	$T\left(\frac{n}{2^2}\right)$	22	(c ₁) + (c ₁) + (c ₁)	$2^2c_{_1}$
ŧ	1	1		1
i	$T\left(\frac{n}{2^i}\right)$	2 ^f	(c ₁) + (c ₁) + + (c ₁) + (c ₁)	$2^i c_1$

Base case occurs when $\frac{n}{2^i} = 1$ (i.e. $i = \log_2 n$)

$$\log n$$
 $T(1)$ n c_0 + c_0 + + c_0 + c_0 $2^{\log n}c_0$

The recursion tree has height $\lg(n)$, each non-leaf level i has work $c_1^2^i$, and the leaf level has work $c_0^2^{\lg(n)}$. Putting this together, we have:

$$\begin{split} & \begin{pmatrix} \lg(n) - 1 \\ \sum_{i=0}^{\log(n) - 1} c_1 2^i \end{pmatrix} + c_0 2^{\lg(n)} = c_1 \begin{pmatrix} \lg(n) - 1 \\ \sum_{i=0}^{\log(n) - 1} 2^i \end{pmatrix} + c_0 n \\ &= c_1 \frac{1 - 2^{\lg(n)}}{1 - 2} + c_0 n \\ &= c_1 (2^{\lg(n)} - 1) + c_0 n \\ &= c_1 (n - 1) + c_0 n \\ &= \left(c_0 + c_1 \right) n - c_1 \end{split}$$

2. To Tree or Not to Tree

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
1
  f(n) {
2
       if (n <= 1) {
3
           return 0
4
5
       int result = f(n/2)
       for (int i = 0; i < n; i++) {
6
           result *= 4
7
8
9
       return result + f(n/2)
10 }
```

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

We look at the three separate components (base case, non-recursive work, recursive work). The base case is a constant amount of work, because we only do a return statement. We'll label it c_0 . The non-recursive work is a constant amount of work (we'll call it c_1) for the assignments and if tests and a constant (we'll call c_2) multiple of n for the loops. The recursive work is $2T\left(\frac{n}{2}\right)$.

Putting these together, we get:

$$T(n) = c_0 \qquad , \text{ if 1}$$

$$T(n) = 2T\left(\frac{n}{2}\right) + c_2 n + c_1 \qquad , \text{ otherwise}$$

b) Use your answer in part (a) to find a closed form for T(n)

	Recursive Call	# Nodes	Tree	Sum Work
0	T(n)	1	(o,r)	$c_{2}n + c_{1}$
1	$T\left(\frac{n}{2}\right)$	2	+ (5)	$c_2 n + 2c_1$
2	$T\left(\frac{n}{2^2}\right)$	22	(0,0) + (0,0) + (0,0) + (0,0)	$c_2 n + 2^2 c_1$
į	ŧ	ŧ		
i	$T\left(\frac{n}{2^i}\right)$	21	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$c_2 n + 2^l c_1$

The recursion tree has $\lg(n)$ height, each non-leaf node of the tree does $c_2 \frac{n}{2^i} + c_1$ work, each leaf node does c_0 work, and each level has 2^i nodes.

So, the total work is

$$\left(\sum_{i=0}^{\lg(n)-1} 2^i \left(c_1 + c_2 \frac{n}{2^i} \right) \right) + c_0 \cdot 2^{\lg(n)} = \left(\sum_{i=0}^{\lg(n)-1} 2^i c_1 + c_2 n \right) + c_0 \cdot (n)$$

$$= c_1 \frac{1 - 2^{\lg(n)}}{1 - 2} + c_2 n \lg(n) + c_0 n$$

= $c_1 (n - 1) + c_2 n \lg(n) + c_0 n$

3. Big-Oof Bounds

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

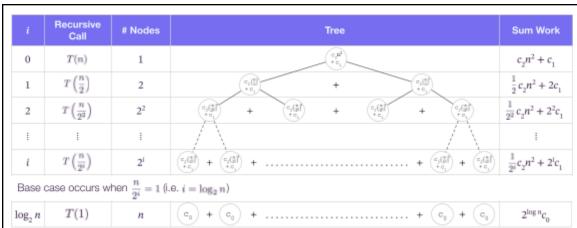
```
f(n) {
1
2
       if (n == 1) {
3
           return 0
4
       }
5
6
       int result = 0
7
       for (int i = 0; i < n; i++) {
           for (int j = 0; j < i; j++) {
8
9
                result += j
10
11
           }
12
13
       return f(n/2) + result + f(n/2)
14 }
```

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

$$T(n) = c_0 \qquad \text{, if } n = 1$$

$$T(n) = 2T\left(\frac{n}{2}\right) + c_2\frac{n(n-1)}{2} + c_1 \text{, otherwise}$$

b) Find a Big-Oh bound for your recurrence.



Since we only want a Big-Oh, we can actually leave off lower-order terms when doing our analysis, as they won't affect the runtime bounds; so, we can ignore the constants c_1 and c_2 in our analysis.

Note that $\frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2} \in \mathcal{O}(n^2)$. We can, again, ignore the lower-order term $(\frac{n}{2})$ since we only want a Big-Oh bound.

The recursion tree has $\lg(n)$ height, each non-leaf node of the tree does $\left(\frac{n}{2^i}\right)^2$ work, each leaf node does \boldsymbol{c}_0 work, and each level has $\boldsymbol{2}^i$ nodes.

So, the total work is:
$$\sum_{i=0}^{\lg(n)-1} 2^i \left(\frac{n}{2^i}\right)^2 + c_0 \cdot 2^{\lg n} = n^2 \sum_{i=0}^{\lg(n)-1} \frac{2^i}{4^i} + c_0 n < n^2 \sum_{i=0}^{\infty} \frac{1}{2^i} + c_0 n = \frac{n^2}{1 - \frac{1}{2}} + c_0 n$$

This expression is upper-bounded by n^2 so $T \in \mathcal{O}(n^2)$.

4. Odds Not in Your Favor

Consider the function g(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
1
  g(n) {
2
       if (n <= 1) {
3
          return 1000
4
5
       if (g(n/3) > 5) {
           for (int i = 0; i < n; i++) {
6
7
               println("Yay!")
8
           }
9
           return 5 * g(n/3)
10
       } else {
           for (int i = 0; i < n * n; i++) {
11
               println("Yay!")
12
13
           return 4 * g(n/3)
14
15
       }
16
```

a) Find a recurrence T(n) modeling the worst-case runtime complexity of g(n)

$$T(n) = c_0 \qquad \text{, if } n \leq 1$$

$$T(n) = 2T\left(\frac{n}{3}\right) + c_2 n + c_1 \quad \text{, otherwise}$$

b) Use your answer in part (a) to find a closed form for T(n)

	Recursive Call	# Nodes	Tree	Sum Work
0	T(n)	1	(9,8) (+C ₂)	$c_{2}n + c_{1}$
1	$T\left(\frac{n}{3}\right)$	2	+ 3	$\frac{2}{3}c_2n + 2c_1$
2	$T\left(\frac{n}{3^2}\right)$	22	(1) + (1) + (1) + (1) + (1) + (1)	$\frac{2^2}{3^2}c_2n + 2^2c$
ì	ŧ	į	\wedge	1
í	$T\left(\frac{n}{3^i}\right)$	21	(1) + (1) + (1) + (1) + (1) + (1)	$\frac{2^{i}}{3^{i}}c_{2}n + 2^{i}c_{2}$
Base c	case occurs w	hen $\frac{n}{3^i} = 1$ (i	.e. $i = \log_3 n$)	
og ₃ n	T(1)	n	(c ₀) + (c ₀) + + (c ₀) + (c ₀)	$2^{\log n} c_0$

$$\begin{split} &=\sum_{i=0}^{\log_3(n)-1} \left(\frac{c_2n2^i}{3^i} + c_12^i\right) + c_02^{\log_3(n)} \\ &= c_2n \left(\sum_{i=0}^{\log_3(n)-1} \left(\frac{2}{3}\right)^i\right) + c_1 \left(\sum_{i=0}^{\log_3(n)-1} 2^i\right) + c_02^{\log_3(n)} \\ &= c_2n \left(\frac{1-\left(\frac{2}{3}\right)^{\log_3(n)}}{1-\frac{2}{3}}\right) + c_1 \left(\frac{1-2^{\log_3(n)}}{1-2}\right) + c_02^{\log_3(n)} \\ &= 3c_2n \left(1-\frac{n^{\log_3(2)}}{n}\right) + c_1 \left(\frac{1-2^{\log_3(n)}}{1-2}\right) + c_02^{\log_3(n)} \\ &= 3c_2n \left(1-\frac{n^{\log_3(2)}}{n}\right) + c_1 \left(n^{\log_3(2)}-1\right) + c_0n^{\log_3(2)} \\ &= 3c_2n - 3c_2n^{\log_3(2)} + c_1n^{\log_3(2)} - c_1 + c_0n^{\log_3(2)} \\ &= 3c_2n + \left(c_0 + c_1 - 3c_2\right)n^{\log_3(2)} - c_1 \end{split}$$