
CSE 332: Data Structures and Parallelism

Section 3: Recurrences and Closed Forms

Terminology Recurrence Function/Relation General formula Closed form

Definition Piecewise function that
mathematically models the
runtime of a recursive algorithm
(might want to define constants)

Function written as the
number of expansion 𝑖
and recurrence function
(might have a summation)

General formula evaluated without
recurrence function or summations
(force them to be in terms of
constants or )𝑛

Example

𝑇 𝑛( ) = 𝑐
1

, for 𝑛 = 1

𝑇 𝑛( ) = 𝑇 𝑛
2( ) + 𝑐

2
, otherwise 𝑇(𝑛) = 𝑇 𝑛

2𝑖( ) + 𝑖 · 𝑐
2

Let ,𝑖 = log
2
𝑛

𝑇 𝑛( ) = 𝑇 𝑛

2
log

2
𝑛( ) + log

2
𝑛 · 𝑐

2

= 𝑇 1( ) + log
2
𝑛 · 𝑐

2
= 𝑐

1
+ log

2
𝑛 · 𝑐

2

0. Not to Tree
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑓 𝑛( )
bound for this recurrence.

1 f(n) {

2 if (n <= 0) {

3 return 1;

4 }

5 return 2 * f(n − 1) + 1;

6 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛( ) 𝑓 𝑛( )

𝑇 𝑛( ) = 𝑐
0

, if 𝑛 ≤ 0
𝑇 𝑛( ) = 𝑇 𝑛 − 1( ) + 𝑐

1
, otherwise

b) Use your answer in part (a) to find a closed form for 𝑇 𝑛( )

Unrolling the recurrence, we get
𝑇 𝑛( ) = 𝑇 𝑛 − 1( ) + 𝑐

1
= 𝑇 𝑛 − 2( ) + 𝑐

1
+ 𝑐

1
= 𝑇 0( ) + 𝑐

1
+···+ 𝑐

1
= 𝑐

0
+ 𝑐

1
+···+ 𝑐

1
= 𝑐

0
+ 𝑛 · 𝑐

1



1. To Tree
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Ohℎ 𝑛( )
bound for this recurrence.

1 h(n) {

2 if (n <= 1) {

3 return 1

4 } else {

5 return h(n/2) + n + 2*h(n/2)

6 }

7 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛( ) ℎ 𝑛( )

𝑇 𝑛( ) = 𝑐
0

, if 𝑛 ≤ 1

𝑇 𝑛( ) = 2𝑇 𝑛
2( ) + 𝑐

1
, otherwise

b) Use your answer in part (a) to find a closed form for 𝑇 𝑛( )

The recursion tree has height , each non-leaf level has work , and the leaf level has worklg 𝑛( ) 𝑖 𝑐
1
2𝑖 𝑐

0
2lg 𝑛( )

. Putting this together, we have:

𝑖=0

lg 𝑛( )−1

∑ 𝑐
1
2𝑖( ) + 𝑐

0
2lg 𝑛( ) = 𝑐

1
𝑖=0

lg 𝑛( )−1

∑ 2𝑖( ) + 𝑐
0
𝑛

= 𝑐
1
1−2lg 𝑛( )

1−2 + 𝑐
0
𝑛

= 𝑐
1
2lg 𝑛( ) − 1( ) + 𝑐

0
𝑛

= 𝑐
1
𝑛 − 1( ) + 𝑐

0
𝑛

= 𝑐
0
+ 𝑐

1( )𝑛 − 𝑐
1



2. To Tree or Not to Tree
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑓 𝑛( )
bound for this recurrence.

1 f(n) {

2 if (n <= 1) {

3 return 0

4 }

5 int result = f(n/2)

6 for (int i = 0; i < n; i++) {

7 result *= 4

8 }

9 return result + f(n/2)

10 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛( ) 𝑓 𝑛( )

We look at the three separate components (base case, non-recursive work, recursive work). The base
case is a constant amount of work, because we only do a return statement. We’ll label it . The𝑐

0
non-recursive work is a constant amount of work (we'll call it ) for the assignments and if tests and a𝑐

1

constant (we'll call ) multiple of for the loops. The recursive work is .𝑐
2

𝑛 2𝑇 𝑛
2( )

Putting these together, we get:

𝑇 𝑛( ) = 𝑐
0

, if 1

𝑇 𝑛( ) = 2𝑇 𝑛
2( ) + 𝑐

2
𝑛 + 𝑐

1
, otherwise

b) Use your answer in part (a) to find a closed form for 𝑇 𝑛( )

The recursion tree has height, each non-leaf node of the tree does work, eachlg 𝑛( ) 𝑐
2

𝑛

2𝑖
+ 𝑐

1

leaf node does work, and each level has nodes.𝑐
0

2𝑖

So, the total work is

𝑖=0

lg 𝑛( )−1

∑ 2𝑖 𝑐
1
+ 𝑐

2
𝑛

2𝑖( )( ) + 𝑐
0
· 2lg 𝑛( )=

𝑖=0

lg 𝑛( )−1

∑ 2𝑖𝑐
1
+ 𝑐

2
𝑛( ) + 𝑐

0
· 𝑛( )



= 𝑐
1
1−2lg 𝑛( )

1−2 + 𝑐
2
𝑛 lg 𝑛( ) + 𝑐

0
𝑛

= 𝑐
1
𝑛 − 1( ) + 𝑐

2
𝑛 lg 𝑛( ) + 𝑐

0
𝑛



3. Big-Oof Bounds
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑓 𝑛( )
bound for this recurrence.

1 f(n) {

2 if (n == 1) {

3 return 0

4 }

5

6 int result = 0

7 for (int i = 0; i < n; i++) {

8 for (int j = 0; j < i; j++) {

9 result += j

10

11 }

12 }

13 return f(n/2) + result + f(n/2)

14 }

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛( ) 𝑓 𝑛( )

𝑇 𝑛( ) = 𝑐
0

, if 𝑛 = 1

𝑇 𝑛( ) = 2𝑇 𝑛
2( ) + 𝑐

2
𝑛 𝑛−1( )

2 + 𝑐
1
, otherwise

b) Find a Big-Oh bound for your recurrence.

Since we only want a Big-Oh, we can actually leave off lower-order terms when doing our analysis, as
they won’t affect the runtime bounds; so, we can ignore the constants and in our analysis.𝑐

1
𝑐
2

Note that . We can, again, ignore the lower-order term ( ) since we only want a𝑛 𝑛−1( )
2 = 𝑛2

2 − 𝑛
2 ∈ 𝒪 𝑛2( ) 𝑛

2
Big-Oh bound.



The recursion tree has height, each non-leaf node of the tree does work, each leaf node doeslg 𝑛( ) 𝑛

2𝑖( )2
work, and each level has nodes.𝑐

0
2𝑖

So, the total work is:

𝑖=0

lg 𝑛( )−1

∑ 2𝑖 𝑛

2𝑖( )2 + 𝑐
0
· 2lg𝑛 = 𝑛2

𝑖=0

lg 𝑛( )−1

∑ 2𝑖

4𝑖
+ 𝑐

0
𝑛 < 𝑛2

𝑖=0

∞

∑ 1

2𝑖
+ 𝑐

0
𝑛 = 𝑛2

1− 1
2

+ 𝑐
0
𝑛

This expression is upper-bounded by so .𝑛2 𝑇 ∈ 𝒪 𝑛2( )



4. Odds Not in Your Favor
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh𝑔 𝑛( )
bound for this recurrence.

1 g(n) {

2 if (n <= 1) {

3 return 1000

4 }

5 if (g(n/3) > 5) {

6 for (int i = 0; i < n; i++) {

7 println("Yay!")

8 }

9 return 5 * g(n/3)

10 } else {

11 for (int i = 0; i < n * n; i++) {

12 println("Yay!")

13 }

14 return 4 * g(n/3

15 }

16

a) Find a recurrence modeling the worst-case runtime complexity of𝑇 𝑛( ) 𝑔 𝑛( )

𝑇 𝑛( ) = 𝑐
0

, if 𝑛 ≤ 1

𝑇 𝑛( ) = 2𝑇 𝑛
3( ) + 𝑐

2
𝑛 + 𝑐

1
, otherwise

b) Use your answer in part (a) to find a closed form for 𝑇 𝑛( )

The recursion tree has height , each non-leaf level has work , and the leaf level haslog
3
𝑛( ) 𝑖

𝑐
2
𝑛

3𝑖
+ 𝑐

1( )2𝑖
work . Putting this together, we have:𝑐

0
2
log

3
𝑛( )

𝑖=0

log
3
𝑛( )−1

∑
𝑐
2
𝑛

3𝑖
+ 𝑐

1( )2𝑖( ) + 𝑐
0
2
log

3
𝑛( )



=
𝑖=0

log
3
𝑛( )−1

∑
𝑐
2
𝑛2𝑖

3𝑖
+ 𝑐

1
2𝑖( ) + 𝑐

0
2
log

3
𝑛( )

= 𝑐
2
𝑛

𝑖=0

log
3
𝑛( )−1

∑ 2
3( )𝑖( ) + 𝑐

1
𝑖=0

log
3
𝑛( )−1

∑ 2𝑖( ) + 𝑐
0
2
log

3
𝑛( )

Using the finite geometric series,

= 𝑐
2
𝑛

1− 2
3( )log3 𝑛( )

1− 2
3

( ) + 𝑐
1

1−2
log

3
𝑛( )

1−2( ) + 𝑐
0
2
log

3
𝑛( )
= 3𝑐

2
𝑛 1 − 2

3( )log3 𝑛( )( ) + 𝑐
1
2
log

3
𝑛( )
− 1( ) + 𝑐

0
2
log

3
𝑛( )

= 3𝑐
2
𝑛 1 − 𝑛

log
3
2( )

𝑛( ) + 𝑐
1
𝑛
log

3
2( )
− 1( ) + 𝑐

0
𝑛
log

3
2( )

= 3𝑐
2
𝑛 − 3𝑐

2
𝑛
log

3
2( )
+ 𝑐

1
𝑛
log

3
2( )
− 𝑐

1
+ 𝑐

0
𝑛
log

3
2( )

= 3𝑐
2
𝑛 + 𝑐

0
+ 𝑐

1
− 3𝑐

2( )𝑛log3 2( )
− 𝑐

1


